On the infinite-dimensional representation of stochastic controlled systems with delayed control in the diffusion term

نویسندگان

  • Giorgio Fabbri
  • Salvatore Federico
  • G. Fabbri
  • S. Federico
چکیده

In the deterministic context a series of well established results allow to reformulate delay differential equations (DDEs) as evolution equations in infinite dimensional spaces. Several models in the theoretical economic literature have been studied using this reformulation. On the other hand, in the stochastic case only few results of this kind are available and only for specific problems. The contribution of the present letter is to present a way to reformulate in infinite dimension a prototype controlled stochastic DDE, where the control variable appears delayed in the diffusion term. As application, we present a model for quadratic risk minimization hedging of European options with execution delay and a time-to-build model with shock. Some comments concerning the possible employment of the dynamic programming after the reformulation in infinite dimension conclude the letter.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Study of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium

Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...

متن کامل

Study of Solute Dispersion with Source/Sink Impact in Semi-Infinite Porous Medium

Mathematical models for pollutant transport in semi-infinite aquifers are based on the advection-dispersion equation (ADE) and its variants. This study employs the ADE incorporating time-dependent dispersion and velocity and space-time dependent source and sink, expressed by one function. The dispersion theory allows mechanical dispersion to be directly proportional to seepage velocity. Initial...

متن کامل

Symbolic Models for Retarded Jump-Diffusion Systems

In this paper, we provide for the first time an automated, correct-by-construction, controller synthesis scheme for a class of infinite dimensional stochastic hybrid systems, namely, hybrid stochastic retarded systems. First, we construct finite dimensional abstractions approximately bisimilar to original infinite dimensional stochastic systems having some stability property, namely, incrementa...

متن کامل

Almost sure exponential stability of stochastic reaction diffusion systems with Markovian jump

The stochastic reaction diffusion systems may suffer sudden shocks‎, ‎in order to explain this phenomena‎, ‎we use Markovian jumps to model stochastic reaction diffusion systems‎. ‎In this paper‎, ‎we are interested in almost sure exponential stability of stochastic reaction diffusion systems with Markovian jumps‎. ‎Under some reasonable conditions‎, ‎we show that the trivial solution of stocha...

متن کامل

Estimation of Binary Infinite Dilute Diffusion Coefficient Using Artificial Neural Network

In this study, the use of the three-layer feed forward neural network has been investigated for estimating of infinite dilute diffusion coefficient ( D12 ) of supercritical fluid (SCF), liquid and gas binary systems. Infinite dilute diffusion coefficient was spotted as a function of critical temperature, critical pressure, critical volume, normal boiling point, molecular volume in normal boilin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017